Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675472

RESUMO

[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,ß-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities.

2.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340103

RESUMO

Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.

3.
Nat Commun ; 9(1): 4776, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429481

RESUMO

Covalent modifications of proteins with ubiquitin and ubiquitin-like molecules are instrumental to many biological processes. However, identifying the E3 ligase responsible for these modifications remains a major bottleneck in ubiquitin research. Here, we present an E2-thioester-driven identification (E2~dID) method for the targeted identification of substrates of specific E2 and E3 enzyme pairs. E2~dID exploits the central position of E2-conjugating enzymes in the ubiquitination cascade and provides in vitro generated biotinylated E2~ubiquitin thioester conjugates as the sole source for ubiquitination in extracts. This enables purification and mass spectrometry-based identification of modified proteins under stringent conditions independently of the biological source of the extract. We demonstrate the sensitivity and specificity of E2-dID by identifying and validating substrates of APC/C in human cells. Finally, we perform E2~dID with SUMO in S. cerevisiae, showing that this approach can be easily adapted to other ubiquitin-like modifiers and experimental models.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular , Células HeLa , Humanos , Saccharomyces cerevisiae , Enzimas Ativadoras de Ubiquitina/metabolismo
4.
J Nanobiotechnology ; 9: 29, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801388

RESUMO

BACKGROUND: Nanomaterials such as SiO2 nanoparticles (SiO2NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO2NP becomes crucial in order to assess their complete safe applicability limits. RESULTS: In this study, human monocytic leukemia cell line THP-1 and human alveolar epithelial cell line A549 were exposed to a range of amorphous SiO2NP of various sizes and concentrations (0.01, 0.1 and 0.5 mg/ml). Key biological indicators of cellular functions including cell population density, cellular morphology, membrane permeability, lysosomal mass/pH and activation of transcription factor-2 (ATF-2) were evaluated utilizing quantitative high content screening (HCS) approach and biochemical techniques. Despite the use of extremely high nanoparticle concentrations, our findings showed a low degree of cytotoxicity within the panel of SiO2NP investigated. However, at these concentrations, we observed the onset of stress-related cellular response induced by SiO2NP. Interestingly, cells exposed to alumina-coated SiO2NP showed low level, and in some cases complete absence, of stress response and this was consistent up to the highest dose of 0.5 mg/ml. CONCLUSIONS: The present study demonstrates and highlights the importance of subtle biological changes downstream of primary membrane and endocytosis-associated phenomena resulting from high dose SiO2NP exposure. Increased activation of transcription factors, such as ATF-2, was quantitatively assessed as a function of i) human cell line specific stress-response, ii) SiO2NP size and iii) concentration. Despite the low level of cytotoxicity detected for the amorphous SiO2NP investigated, these findings prompt an in-depth focus for future SiO2NP-cell/tissue investigations based on the combined analysis of more subtle signalling pathways associated with accumulation mechanisms, which is essential for establishing the bio-safety of existing and new nanomaterials.


Assuntos
Nanopartículas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Estresse Fisiológico , Fator 2 Ativador da Transcrição/metabolismo , Óxido de Alumínio/efeitos adversos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos
5.
J Biomol Screen ; 15(7): 892-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20625182

RESUMO

High-content screening (HCS) technologies are becoming increasingly used in both large-scale drug discovery and basic research programs. These automated imaging and analysis technologies enable the researcher to elucidate the complex biology that underlies the functions of genes, proteins, and other biomolecules at the cellular level. HCS combines the power of automated digital microscopy and advanced software-based image analysis algorithms to detect and quantify biological changes in cells and tissues. This technology is a particularly powerful tool when used to interrogate the cellular effects of exogenously applied agents such as RNAi and/or small molecules. HCS allows for the evaluation of cellular perturbations that occur both at the level of the single cell and within cellular populations. In a multivariate approach, multiple cellular parameters are collected, allowing for more complex analysis. However, in these scenarios, data flow and management still represent substantial bottlenecks in HCS projects. HCS data include a diversity of information from multiple sources such as details pertaining to screening libraries (e.g., siRNA and small molecules), image stacks acquired from automated microscopes (of which there may be up to several million), and the image analysis data. From this, postprocessing algorithms are required to generate statistical, quality control bioinformatic information and ultimately a final hit list. To accomplish these individual tasks, numerous tools can be used to perform each analytical step; however, management of the entire information flow currently requires the use of commercially available proprietary software, the scope of which is often limited, or bespoke customized scripts. In this article, the authors introduce an open-source research tool that allows for the management of the entire data flow of the HCS data chain, by handling and linking information and providing many powerful postprocessing and visualization tools.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Software , Fluxo de Trabalho , Estatística como Assunto
6.
J Biomol Screen ; 15(5): 541-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20460253

RESUMO

RNA interfering (RNAi) screening strategies offer the potential to elucidate the signaling pathways that regulate integrin and adhesion receptor-mediated changes in T lymphocyte morphology. Of crucial importance, however, is the definition of key sets of parameters that will provide accurate, quantitative, and nonredundant information to flag relevant hits in such assays. In this study, the authors have used an image-based high-content analysis (HCA) technology platform and a panel of 24 pharmacological inhibitors, at a range of concentrations, to define key sets of parameters that enables sensitive and quantitative effects on integrin (LFA-1)-mediated lymphocyte morphology to be evaluated. In particular, multiparametric analysis of lymphocyte morphology that was based on intracellular staining of both the F-actin and alpha-tubulin cytoskeleton resulted in improved ability to discriminate morphological behavior compared to F-actin staining alone. Morphological and fluorescence intensity/distribution profiling of pharmacologically treated lymphocytes stimulated with integrin (LFA-1) and adhesion receptors (CD44) also revealed notable differences in their sensitivity to inhibitors. The assay described here may be used in HCA strategies such as RNAi screening assays to elucidate the signaling pathways and molecules that regulate integrin/adhesion receptor-mediated T lymphocyte polarization.


Assuntos
Polaridade Celular , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Actinas/metabolismo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos T/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...